
VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Jnana Sangama, Belagavi-590 014

A Dissertation Report on

CNN Based Security Authentication for Wireless Multimedia

Networks

submitted as a partial fulfillment of the requirements

for the award of the degree

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

By

Gautham S K

1BY19SCS02

Under the guidance

Dr. Anjan Krishnamurthy,

Associate Professor & PG Coordinator

Department of Computer Science and Engineering

B M S Institute of Technology and Management

BENGALURU - 560064

2021

DECLARATION

I, Gautham SK, student of fourth semester M.Tech, in the Department of Computer

Science and Engineering, B M S Institute of Technology and Management, Bengaluru

declare that the project work entitled “CNN Based Security Authentication for Wireless

Multimedia Networks” has been carried out by me and submitted in partial fulfillment

of the course requirements for the award of degree in Master of Technology in Computer

Science and Engineering of Visvesvaraya Technological University, Belagavi during the

academic year 2019 -2021. The matter embodied in this report has not been submitted

to any other university or institution for the award of any other degree or diploma.

Gautham SK

1BY19SCS02

MTech in CSE Department of Computer Science and Engineering,

B M S Institute of Technology and Management

Bengaluru -560064

Date of Submission:

ACKNOWLEDGEMENT

I am happy to present this project after completing it successfully. This work would

not have been possible without the guidance, assistance and suggestions of many indi-

viduals. I would like to express my deep sense of gratitude and indebtedness to each and

every one who has helped me to make this work success.

I gracefully thank my Internal Guide, Dr Anjan Krishnamurthy, Associate Pro-

fessor & PG Coordinator, Department of Computer Science and Engineering,

BMS Institute of Technology & Management for his guidance, intangible support

and advice throughout the dissertation. It would have not been possible without his sup-

port and guidance.

I sincerely thank my PEC member Dr. Anil GN, Dean Academics, BMS Insti-

tute of Technology & Management, for his constant support, advice and guidance

throughout the dissertation.

I sincerely convey my thanks to Head of the Department, Dr. Bhuvaneswari

C.M, Department of Computer Science and Engineering, BMS Institute of

Technology & Management, for her constant encouragement and support.

I express my heartfelt gratitude and sincere thanks to Dr. Mohan Babu G.N,

Principal of BMS IT & M for his constant encouragement and inspiration.

Finally, I would like to thank to my family, friends and all those who are involved in

successful completion of project work.

Gautham SK

i

ABSTRACT

Security as become a major concern for wireless multimedia networks because of

their role in providing various services. The cost and importance provided for the security

systems are less or considered as the final phase, due to this the system can face a number

of consequences and huge loss in terms of cost and clients. When traditional security

techniques are followed in the system it leads to inadequacies in identifying emerging

security threats and also lacks in computing efficiency. Furthermore, conventional upper-

layer authentication doesn’t provide any protection for physical layer, thus leading to

leakage of privacy data which is a major concern.

Keep these issues in mind, the report has envisioned an artificial intelligence based

security authentication system that is lightweight, adaptive and doesn’t require any ex-

plicit programming. Here, the security authentication system is build using neural net-

works that is build on convolutional filters that explore the physical layer attributes and

understand the structure of the system, thereby classifying the different devices to there

respective classes.

Experimental analysis and validation can ensure that the privacy of wireless mul-

timedia devices can be achieved and also ensuring lightweight authentication, thereby

solving the concerns of traditional security authentication system. The neural model is

also trained using Gaussian noise of different standard deviation so that it can be used

in a practical scenario.

ii

Contents

ACKNOWLEDGEMENT . i

ABSTRACT . ii

CONTENTS . ii

1 INTRODUCTION 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem Statement . 3

1.4 Aim and Objective . 3

1.5 Scope . 4

1.6 Literature Survey . 4

1.7 Summary . 9

1.8 Organization of the thesis . 10

2 Core Concepts of Neural Network 11

2.1 Convolutional Neural Network . 11

2.2 Rectified Linear Unit (ReLU) . 13

2.3 Pooling Layer . 13

2.4 Fully Connected Layer . 14

2.5 Summary . 14

3 SOFTWARE AND HARDWARE REQUIREMENT SPECIFICATION 15

3.1 Preamble . 15

3.2 Hardware Requirements . 15

iii

3.3 Software Requirements . 16

3.4 Supporting Libraries . 16

3.5 Other Non-Functional Requirements . 16

4 SYSTEM DESIGN 18

4.1 Preamble . 18

4.2 System Architecture . 18

4.3 Design of Data Flow Diagram . 19

4.3.1 Data Flow Diagram - Level 0 . 20

4.3.2 Data Flow Diagram - Level 1 . 20

4.3.3 Data Flow Diagram - Level 2 . 20

4.3.4 Use Case Diagram . 23

4.3.5 UML Activity Diagram . 24

4.3.6 Summary . 25

5 IMPLEMENTATION 26

5.1 Programming Language and Platform Selection 26

5.2 Process involved in implementation . 26

5.2.1 Splitting . 27

5.2.2 Preprocessing . 27

5.2.3 Data Modelling . 28

5.2.4 Feature Extraction . 28

5.2.5 Classifiers . 30

5.3 Implementation Challenges . 32

5.4 Summary . 33

6 SOFTWARE TESTING 34

6.1 Software Testing . 34

6.2 Unit Test of CNN model without noise 34

6.3 Unit Test of CNN model with Noise (Standard deviation: 0.1) 35

6.4 Unit Test of CNN model with Noise (Standard deviation: 0.2) 36

iv

6.5 Unit Test of CNN model with Noise (Standard deviation: 0.3) 36

6.6 Unit Test of CNN model with Noise (Standard deviation: 0.4) 37

6.7 Unit Test of CNN model with Noise (Standard deviation: 0.5) 38

6.8 Integration Testing . 38

6.9 Importing Dataset . 39

6.10 Importing user defined function . 39

6.11 System Testing . 40

7 EXPERIMENTAL ANALYSIS AND RESULTS 41

7.1 Experimental Analysis . 41

7.1.1 Confusion Matrix of CNN Model without Noise 42

7.1.2 Confusion Matrix of CNN Model with Noise 0.1 43

7.1.3 Confusion Matrix of CNN Model with Noise 0.2 44

7.1.4 Confusion Matrix of CNN Model with Noise 0.3 45

7.1.5 Confusion Matrix of CNN Model with Noise 0.4 46

7.1.6 Confusion Matrix of CNN Model with Noise 0.5 47

7.2 Analysis and Validation . 48

7.3 Model Accuracy of CNN Model without Noise 48

7.4 Model Accuracy of CNN Model with Noise 0.1 49

7.5 Model Accuracy of CNN Model with Noise 0.2 49

7.6 Model Accuracy of CNN Model with Noise 0.3 50

7.7 Model Accuracy of CNN Model with Noise 0.4 51

7.8 Model Accuracy of CNN Model with Noise 0.5 51

8 CONCLUSION 53

8.1 Limitations . 53

8.2 Future Scope . 53

APPENDICES61

v

List of Figures

2.1 Example of a filter convolving on a input to create a feature map (Source:

machinelearingmastery.com) . 12

4.1 System Architecture . 19

4.2 DFD - Level 0 . 20

4.3 DFD - Level 1 . 21

4.4 DFD - Level 2 . 22

4.5 Use Case Diagram . 23

4.6 UML Activity Diagram . 24

5.1 Dataset Splitting . 27

5.2 Preprocessing of Dataset . 27

5.3 Resampling of dataset . 28

5.4 Feature Extraction . 29

5.5 Convolution 1D . 30

5.6 BatchNormalization() . 30

5.7 MaxPooling() . 31

5.8 Flatten() . 31

5.9 Dense() . 32

7.1 CNN without Noise - Confusion Matrix 42

7.2 CNN with Noise 0.1 - Confusion Matrix 43

7.3 CNN with Noise 0.2 - Confusion Matrix 44

7.4 CNN with Noise 0.3 - Confusion Matrix 45

vi

7.5 CNN with Noise 0.4 - Confusion Matrix 46

7.6 CNN with Noise 0.5 - Confusion Matrix 47

7.7 CNN without Noise - Model Accuracy 48

7.8 CNN with Noise 0.1 - Model Accuracy 49

7.9 CNN with Noise 0.2 - Model Accuracy 50

7.10 CNN with Noise 0.3 - Model Accuracy 50

7.11 CNN with Noise 0.4 - Model Accuracy 51

7.12 CNN with Noise 0.5 - Model Accuracy 52

vii

List of Tables

6.1 Testing of CNN without noise . 35

6.2 Testing of CNN with noise 0.1 . 35

6.3 Testing of CNN with noise 0.2 . 36

6.4 Testing of CNN with noise 0.3 . 37

6.5 Testing of CNN with noise 0.4 . 37

6.6 Testing of CNN with noise 0.5 . 38

6.7 Import modules . 39

6.8 Import dataset . 39

6.9 Import user defined function . 40

6.10 System Testing . 40

viii

GLOSSORY

NIST National Institute of Standard and Technology

CNN Convolutional Neural Network

RSS Received Signal Strength

DAS Distance Between Adjacent

PCC Pearson Coorelation Coefficient

ELM Extreme Learning Model

PHY Physical

AUC Authentication

ML Machine Learning

DNN Deep Neural Network

CPNN Convolution Preprocessing Neural Network

SLF Secure Loss Function

SL Safety Learning

Tx Transmitting

Rx Receiver

RF-PUF Radio-Frequency Physical Unclonable Function

SWIPT Simultaneous Wireless Information & Power Transfer

WPCN Wireless Powered Communication Network

FNN Feed Forward Neural Network

SNR Signal-ToNoiseRatio

ix

Chapter 1

INTRODUCTION

1.1 Background

The approach of advances in 5G and Internet of Things (IoT) envoys the appearance

of the following flood of omnipresent connected society [1] [2] [3] [4] [5]. Specifically,

when artificial intelligence and multimedia networks convergence it brings wide range of

services and applications for training, monitoring and working in the areas of smart home,

transportation, smart city, healthcare and many more [6] [7]. Multimedia applications

will significantly extend the manner in which people see the world and be applied to

individuals’ every day lives.

Be that as it may, the complexity of multimedia frameworks as well as drastically

expanding utilization of multimedia sensors inside the smart process bring numerous

security and privacy challenges. For instance, when the multimedia network gather dif-

ferent information through various sensors, the attacker/malicious sensors could delude

the user by misusing interactivity and giving false messages to the frameworks [8] [9].

Possible security attacks could prompt disastrous consequences what’s more, can cause

avalanche like damages in wireless multimedia networks [10]. Also, the widely used re-

source controlled multimedia devices are defenseless against attacks, causing damages to

the multimedia network through different types of wireless attacks. Thus, it is important

to plan a compelling protection mechanism for wireless multimedia networks to guar-

antee the security of communication transmissions. Normally, access control mechanism

1

and authentication are considered as key security procedures and basic design for multi-

media networks [11]. These procedures secure communication by affirming the identities

of all users and their access to the approved network. In any case, the disposition of large

number of devices brings new challenges for security setups. Expressly, those multimedia

devices that works on low-delay transmissions couldn’t uphold the authentication tech-

nique that require very high computational overhead, and the sensors contained in the

network require lightweight processing cost to guarantee communication performance.

Hence, to protect against the attacks in wireless multimedia networks [12], this paper

focuses on the difficulties looked by traditional verification schemes and further proposes

new light weight security strategy method.

1.2 Motivation

The motivation of the project is the difficulties faced from conventional security ap-

proaches. Customary key-based cryptography strategies require huge resources and high

processing capabilities, which is not effective for wireless multimedia networks. All the

more significantly, digital key might be undermined in security management procedures,

like key management or key transmission.

Conventional security procedures may experience attacks from adversary due to in-

creases in the number of multimedia sensors which leads to the increase in the complexity

of network scenarios. Security strategies executed on higher layers of networks face dif-

ficult to maintain the balance between the security and cost, which leads to inability to

secure legitimate communication. Due to this The malignant devices can access the sen-

sitive data and damage the authentication process. Therefore, artificial intelligence based

lightweight authentication system will very much useful to overcome the these security

issues.

Conventional authentication procedures require more efforts to extricate complex fea-

tures to increase the security levels, which leads to higher communication and processing

overheads, thereby leading to communication latency. This is not acceptable for a real-

time wireless multimedia network. The conventional authentication procedures need time

2

to manually select the statistical characteristics, which is not a non-adaptive authenti-

cation process. Therefore there is need for authentication mechanism which are adaptive

in nature.

Traditional authentication strategies faces difficulties while establishing an accurate

detection model in a practical scenarios. This is because the model is trained using limited

statistical properties to predict the outcome. These bring loopholes in the learning model

which is a threat for continuous learning. To improve the security of the confirmation

measure, it is important to plan a shrewd verification approach that doesn’t need express

programming. So, to increase the security of the authentication, we need to build design

a model that does not require any explicit programming.

1.3 Problem Statement

The problem are derived after making a thorough observation and analysis about the

neural network that can recognizes legitimate nodes in the wireless multimedia network

and also classify four different types of wireless network attacks. So need to design system

that allow to:

• Accurately and efficiently classify the multimedia nodes as legitimate or illegitimate

and also classify the type of attack.

• Designing the CNN architecture which will produce the best analysis result.

• Designing models that can also classify multimedia noise which is under noise with

different ranges i.e. is from standard deviation of 0.1 to 0.5, where the trained model

can also be used in the practical environment.

1.4 Aim and Objective

The project objective is as follows:

• To study various neural network methods.

3

• To identify the appropriate neural network techniques that can solve the mentioned

problem statements.

• To select the appropriate dataset to build the neural network for the problem

statement.

• To build the required CNN architecture to obtain the required results.

• Perform the required analysis and validation of the neural model.

1.5 Scope

The focus of the project is to build a neural network model (CNN) that can recognize

legitimate and illegitimate wireless multimedia nodes and also classify the type of wireless

attack. The model also build to classify multimedia nodes that is under noise, so the build

model can also be used in the practical environment.

1.6 Literature Survey

A slope authentication [12] is proposed for physical layer, which is based on the optimal

feature selection method and neural network., a new index, feature validity value, is

first introduced to evaluate the impact of sensitive features. Then, based on the new

feature validity index, an algorithm is designed to select the optimal features from the

legitimate devices. This algorithm is in a position to alleviate the over-fitting problem

of the underlying neural network to an out sized extent. The selected optimal features

[13] are used to train the underlying neural network, and finally, an optimal classifier is

constructed to detect the illegitimate devices.

A generalized model for physical-layer-based confidential data transmission and wire-

less authentication [14] which is based on channel uncertainty and available design di-

mensions such as time, frequency, and space. The limitation of the model is it shows low

accuracy in multi carrier system.

4

A new blind authentication [15] scheme at the physical layer based on the techniques of

blind known interference cancellation. The scheme is based on Simplified Neural Network

which is a modified version a feed forward neural network, it takes mean and variance

close to 0 & 1 of the training data set. It uses scaled exponential linear unit and uses

alpha dropout to prevent overfitting. The model is trained with 72 million records which

is divided into 5 classes namely normal traffic, evasion, white box attack, reliability and

theft. The neural network consists of 3 hidden layer which consist of 16 neurons for each

layer. This is first paper which as normalized the input features of deep learning model in

IoT dataset, which resulted in performance increase but became vulnerable to adversarial

attacks.

A physical-layer authentication scheme based on extreme learning machine (ELM)

[16] that exploit multi-dimensional characters of radio channels and use the training

data generated from the spoofing model to improve the spoofing detection accuracy.

ELM is a modified version of feed forward neural network mainly used for classification

and regression. The advantage is fast learning speed, ease implementation and minimal

human intervention. It consists of multi- layer neural network so there is no need of

iteration and weight of nodes are solved by least square solution. They also proposed a

pseudo adversary model which generates adversarial samples which is based on Euclidean

distance. The limitation is it increases of Bayes risk due to insufficient training data.

A novel threshold-free PHY-AUC method based on machine learning (ML) [17], which

adopts channel matrices estimated by the wireless nodes. It uses channel matrices esti-

mated by wireless nodes as the authentication input and investigates the optimal dimen-

sion of channel matrices to improve accuracy. The channel matrices provide information

about spatial multiplexing to determine is it possible for multi-layer data transmission.

The limitation is that is the matrices are subdivided in small matrices which decreases

the information about the wireless channel.

A deep learning based physical layer authentication framework is proposed [18]. Three

algorithms are used:

• Deep neural network (DNN).

5

• Convolutional neural network (CNN).

• Convolution preprocessing neural network (CPNN).

It is based on spoofing attacks, the input to the model is channel state information

which describes the properties of the communication link. DNN is a modified version of

artificial neural network because of the increase in the number of hidden layers, which

contains weights and thresholds which represent the activation function. CNN is a neural

network with convolution layer and pooling layer. Convolution layer Computes multiple

attributes paralleling to produce set of activation function. Pooling layer reduces the data

dimension without losing the valid information. The core idea of CPNN is to perform

offline convolution preprocessing before training the neural network which reduce the

data dimension and extract the feature information.

A secured transmission is achieved by utilizing a modified secure loss function (SLF)

based on cross-entropy which is based on machine-learning libraries [19]. SLF approach

is applied in a Gaussian wiretap channel setup. It is based on cross entropy loss which

measure the performance of classification model whose output values between 0 1. The

model is trained based on the log loss, where if the log loss is more the predictability of

the model decreases. The model consists of 3 phases where the adversary node is trained

with different scenarios and based in the learning the sender and receiver node is trained.

A Dual Learning-based safe Semi-supervised learning [20], which employs dual learning

to estimate the safety or risk of the unlabeled instances. For safe exploitation of the

unlabeled instances, used supervised learning (SL) to analyze the risk of the unlabeled

instances. The limitation is that it predicts bad results for more than 200 instances it is

safer to use clustering and regression for instances for more than 200.

RF-PUF [21] which is a deep neural network-based framework that allows real-time

authentication of wireless nodes based on effects of inherent process variation on RF

properties of the wireless transmitters (Tx), detected through in-situ machine learning

at the receiver (Rx) end. The limitation is that the Rx requires two neural networks

which can be implemented using the on-board microprocessor at a nominal power cost

which is not significant if the network is asymmetric.

6

The paper [22] explores how to model an intrusion detection system based on deep

learning which is based on recurrent neural networks. Recurrent neural network is an

advanced version of feed forward neural network, in this node between the hidden layer

are connected with each other, so it nor only depends on the weights but also hidden

vector. It is based directional loop, that is it memorizes the previous input information

and apply it to the current output. It also takes series of input, so it produces a different

output depending on the previous input.

The paper [23], briefly review the concepts of machine learning and there propose in

the compelling applications of 5G networks, including cognitive radios, massive MIMO,

smart grid, device-to device communications, and so on. It specifies different algorithm

based on supervised, un-supervised and reinforcement learning based on 5G and which

algorithm can be used based on the type of dataset or attributes. It also talks on het-

erogenous network which is combination of KNN and SVM.

A deep learning memory structure which enables the IoT devices [24] to extract a set of

stochastic features from their generated signal and dynamically watermark these features

into the signal. It also provides of deep learning basic based on physical layer, list of layer

types, list of activation functions, list loss functions, deep learning libraries, network

dimension, convolution layer, examples of machine learning application for physical layer

and challenges faced in physical layer

The paper [25], briefs about how deep learning is used to handle wireless OFDM

channels in an end-to-end manner. This approach estimates CSI implicitly and recovers

the transmitted symbols directly. Its limitation of the paper is that it as not specified a

good generalization ability which led to disagreement with the channel models used in

training stage.

Investigate the attack model for IoT systems and review the IoT security solutions

based on machine learning (ML) techniques [26] including supervised learning, unsu-

pervised learning, and reinforcement learning. It specifies different attack that can take

place in IoT devices and steps to prevent these attacks. It also specified different each

attack which security techniques and machine learning techniques that can be used. And

concluding the challenges faced in IoT devices.

7

Survey is performed on the applications of DL algorithms [27] for different network

layers, including physical layer modulation/coding, link layer access control/resource al-

location, and routing layer path search, and traffic balancing. It specifies the benefits of

using deep learning techniques used in physical layer authentication and different deep

learning techniques used in different layer of networks especially physical layer and also

specified different deep learning frameworks used in physical layer.

A joint design of the AN-aided transmission [28] and the power allocation to maximize

the secrecy rate at the destination, under the harvested energy constraint at the ERs. In

the paper RF signals carriers both energy and information for the receiver nodes. Two

system has been proposed Simultaneous Wireless Information Power Transfer (SWIPT)

and Wireless Powered Communication Network (WPCN). They have used the concept

of Artificial Noise (AN) that is created by the neural model trained using the channel

information state.

Considered a secure communication in a multi user wireless network [29], where full-

duplex (FD) users operate to enhance wireless physical layer security and used this to

exploit the user selection scheme to strengthen the secure performance. The limitation

of the paper is that while modelling they have considered imperfect channel state infor-

mation by considering channel estimation errors.

Considered interpreting a communications system as an auto encoder [30] and de-

veloped a fundamental new way to think about communications system design as an

end-to-end reconstruction task that seeks to jointly optimize transmitter and receiver

components during a single process. The challenge is the scalability to long block lengths.

Considered a variant of the Feed Forward Neural Network FNN known as the Self-

normalizing Neural Network (SNN) [31] and compare its performance with the FNN for

classifying intrusion attacks in an IoT network. The limitation of the paper is that per-

formance accuracy for adversarial attacks was still below 50% and could not be regarded

as a suitable defense against adversarial attacks.

Considered multi-user system which is equipped with FD legitimate receivers [32]

with advantage of FD capability of the receivers to send jamming signals against the

eavesdropper. The limitation of the paper is, when the transmit power of source is higher

8

than 10 dB, the secrecy rate is reduced. Performance of All-in jamming method isn’t the

simplest solution for the case of low SNR.

Proposed an adaptive physical layer authentication scheme based on machine learn-

ing as an intelligent process to learn and utilize the complex time-varying environment

[33] and to improve the reliability and robustness of physical layer authentication. The

limitation of the paper is that while training the paper they have only considered the 3

attributes of the physical layer.

Proposed a novel authentication method based on sparse representation [34] for the

reconciliation in physical layer key Generation. The limitation of the paper is the they

have only considered low signal-to noise ration which is not application in the case of

practical environment.

Proposed a physical-layer spoofing detecting scheme [35], were signal processing and

feature recognition are utilized to improve the detection performance. The model is based

on kernel-based Machine Learning Technique which is a non-parametric learning tech-

nique, they estimate the physical layer attributes using linear function or polynomial

function. They have also considered the receiving time along with the other attributes.

The limitation is that feature selection is still depending on experience and appropriate

features are crucial impact on the recognition performance.

1.7 Summary

To summaries this particular section, the section starts with the background of AI tech-

nologies combined with multimedia networks which brings wide range of technologies

and the security issues or consequences that follows. it also talks about the traditional

or convectional security authentication system and its fall backs, thereby leading to its

motivation to build a better authentication system. Followed by the problem statements

of the proposed model building, the aim, objectives and scope of the security system.

Finally the literature survey that build the road map and provided with knowledge and

techniques used to build the proposed security authentication system.

9

1.8 Organization of the thesis

The rest of this report is structured as follows. Chapter II describe about the fundamental

of the neural network and different methods that have been used in the neural model.

Chapter III gives a description about the software and hardware requirement utilized

in the model and the supporting libraries used to build the neural network.

Chapter IV describes the system architecture, use case diagram, UML activity dia-

gram and data flow diagram.

Chapter V talks about the implementation and process involved in building the neural

network.

Chapter VI described the software testing and validation process involved in the neu-

ral network that includes the validation of different model based on standard devastation

of noise, integration testing, importing of dataset, user defined dataset and the system

testing.

Chapter VII describes about the experimental analysis and the results of the neural

network, how much effective is the neural network and also based on the noise deviation.

Chapter VIII is the concluding part of the report or thesis or the project which talks

about the limitation and conclusion of the project. future research prospects.

10

Chapter 2

Core Concepts of Neural Network

The root concept of neural network is artificial intelligence. A neural network is made

up of a collection of algorithms that can recognize the relationship within a set of data

through a process that is similar to the way in which human brain works. In general

neural network refers to a system of neurons that can adapt to the changing input, so

that the network generates the same results without the need of redesigning the output

criteria. One of the algorithm that is based on neural network is Convolutional Neural

Network (CNN).

2.1 Convolutional Neural Network

The convolutional neural network is majorly build by convolutional layer which

perform an operation know as ”convolution. A convolution is a simple process where

a filter convolve through the input which results in an activation. Repeating the same

process with the same filter to an input results in a map of activation’s called a feature

map, which indicates the relationship and strength of the detected feature present in the

input.

Generally, convolution is a linear operation that involves multiplication of set of

weights with the input, which is similar to the traditional neural network. The mul-

tiplication is performed between the array of input data and array of weights, commonly

know as filters.

11

The size of the filters are always smaller than the input data and the multiplication

operation that is performed between the filter sized input and the filter is dot product

which performs element wise multiplication and the result that is obtained is summed,

which is a single value. The operation that is performed is commonly referred as scalar

product because the result obtained is a single value.

The size of the filter is intentionally set to a size smaller than the input, so that the

same filter i.e. weights, can be multiplied multiple times with the input array at different

points on the input which includes left to right, top to bottom. This systematic approach

of same filter convolving across the input bring out a powerful idea which is commonly

know as translation in-variance, where the filter that is designed to detect specific type

feature from the input, then the process of the filter that systematically moves across

the entire input allows the filter to discover the specific feature present anywhere in the

input. The output of the multiplication operation is a single value, because the operation

is preformed multiple times, it results to a two-dimensional array which is called as feature

map.

Figure 2.1: Example of a filter convolving on a input to create a feature map (Source:

machinelearingmastery.com)

12

2.2 Rectified Linear Unit (ReLU)

ReLU is an implementation that combines non-linearity and the rectification layer of a

CNN. It is linear function defined as:

Y
(l)
i = max(0, Y

(l−1)
i) (2.1)

ReLU effectively propagate the gradient thereby reducing the vanishing gradient prob-

lem that commonly seen in the deep neural architecture. It solves the cancellation problem

by thresholds the negative values to zero which results in more sparse activation function

in the output. ReLU consists of simple operations like comparison which is efficient to

implement in CNN.

2.3 Pooling Layer

One of the limitation of feature map which is generated by the convolutional layer is

that they store the precise location of each feature present in the input, so if there is a

small movement in the position of feature in the input it will lead to a different feature

map. So an approach to solve this problem is down sampling also know as pooling layer.

This layer ignores the weakest features that is present in the input, retaining only the

strongest features that is present in the input thereby reducing the size of the feature

map. This layer comes after the ReLU layer. It works similar to the convolutional layer

where a pooling filter that performs a specific operation convolves through the feature

map. The size of the filter is smaller than the input feature map. Two common pooling

operation are:

• Max Pooling: It calculates the maximum value present in each patch of feature

map.

• Average Pooling: It calculates the average value present in each patch of feature

map.

13

2.4 Fully Connected Layer

Fully Connected Layer is simple feed forward neural network.These network does not

contain any loops, the information moves forward from the input node to the hidden

nodes and ending at the output node. The output generated by the pooling layer is

flattened and then given as input to the fully connected layer. Flattening is a process

where the output from the pooling layer is converted into a vector. Fully connected layer

works similar to the artificial neural network. The calculation performed in each layer of

fully connected network is:

[g(Wx + b) (2.2)

where,

x: Input vector with dimension [pl, 1]

W: Weight matrix with dimension [pl, nl]

b: Bias vector with dimension [pl, 1]

g: Activation Function

pl: Number of neurons in the previous layer

nl: Number of neurons in the current layer

The last layer of fully connected layer is softmax activation function which pro-

vides the probability of an input which belongs to a particular class.

2.5 Summary

This section dealt with the core concepts of neural network. Here, different layers or

concepts in which a neural network can be build and explains each operation performed

by the layers. It also explore how these layers react in a neural network.

14

Chapter 3

SOFTWARE AND HARDWARE

REQUIREMENT SPECIFICATION

3.1 Preamble

To build a neural network, at first it needs to ensured that we have the necessary software

and hardware requirement. I need to ensure that the hardware and software that is chosen

is able to handle and process the large amount of data so that is gives the required output.

The core of the neural network training is the dataset. The software and the hardware

is going to perform its tasks in the dataset. The dataset obtained contain the physical

layer attributes of the multimedia devices, which is used to understand how the physical

layer attributes and related to each devices.

3.2 Hardware Requirements

• Processor CPU: Intel Core i5 or above(for better performance)

• Graphics Card: CUDA enabled graphics card

• RAM: Minimum 4GB or above(for better performance)

15

3.3 Software Requirements

• Programming Language: Python 3.9

• Operating System: Windows 8.1 or above

• IDE: Anaconda(Jupyter Notebook), Visual Studio Code

3.4 Supporting Libraries

1. to categorial(Keras)

It is used to transform the training data before passing it to the model. It convert

the the input data into vectors which can be processed by the neural network model.

2. to weight(Keras)

This function is used to penalize the under or over represented classes present in the

training data set. It belongs to fit() function that maps classes to a weight value.

3. Convolution1D(TensorFlow)

It creates a convolution kernel that convolve with the input over a single dimension

to produce output and then activation is added to the output.

4. MaxPool1D

The layer created is used to down sample the input which helps in over-fitting and

reduce the computational cost by keeping only the strong features present.

5. Flatten

This layer is defined before fully connected network to provide 1D dimensional

array(vector).

3.5 Other Non-Functional Requirements

Some of the non-functional requirements are:

16

• Modularity: The model is build in number of methods, so only limited changes

needs to be done, if any modification needs to be done and it is also easy to handle

any bugs or error present in the implementation.

• Scalability: The authentication system is highly scalable because the neural network

almost analysis around 2 crore of attribute values for each epochs.

17

Chapter 4

SYSTEM DESIGN

4.1 Preamble

Every implementation of a system requires its own design phase. The design phase in-

cludes building the system architecture. different levels of data flow diagram to represent

the data flow of the system, the use case diagram which represent the different entities of

the system and the task performed by each entities and finally the UML activity diagram

which represent the behavior of the system.

4.2 System Architecture

The system architecture described in fig 4.1; describes about a neural network model

that can classify multimedia devices present in wireless network into five classes. The five

classes are:

1. Legitimate Devices

2. Devices under Sybil Attack

3. Devices under Black-hole Attack

4. Devices under Jamming Attack

5. Devices under Exhaustion

18

The neural network model that is build is Convolutional Neural Network, the model is

trained using the training dataset, which consist of physical layer attributes of wireless

multimedia device. Once the model is trained, the trained model is validated using the

testing dataset, which gives out the analysis and validation of the model.

Figure 4.1: System Architecture

4.3 Design of Data Flow Diagram

Data Flow Diagram are used to represent the data flow of the system. It describes the

steps or process involved in a system i.e. from input till report generation. It also show

the transaction from one state to another state of the system. The neural network that

is build in this thesis will represented in three different levels that are numbered 0, 1 and

2.

19

4.3.1 Data Flow Diagram - Level 0

DFD level 0 is also know as Context Diagram. It describes the complete overview of the

system that as been modelled.

Figure 4.2: DFD - Level 0

Fig 4.2 describes the level 0 DFD of the system, which gives a general idea of how the

system works. It represents the system as a high level process and its relationship with

other entities. Its starts with CNN model generation using the training dataset, where

multiple models will be created within which a best model will be selected which will be

validated and analyzed using the testing dataset and the results will be generated.

4.3.2 Data Flow Diagram - Level 1

DFD level 1 provides more detail about the context diagram. Here the high level process

of the context diagram is represented into its sub-processes. The DFD level 1 of the

system is shown in fig 4.3

The level 1 DFD describes the process that takes place in the dataset. Here the

training data undergoes two types of transaction called as re-sampling, which is used to

create a balanced dataset and are appended with Gaussian noise, which is then followed

by training of model and validation using the testing dataset.

4.3.3 Data Flow Diagram - Level 2

DFD level 2 of the system is described in fig 4.4 which goes deeper into the sub-processes

of level 1 DFD. It gives a clear picture of how the system works and different process in

20

Figure 4.3: DFD - Level 1

each step.

The level 2 diagram describes the system into three categories which are preprocessing,

data scaling and model building. Each categories is explained graphically in detail and

gives a complete idea of how the neural network is build.

21

Figure 4.4: DFD - Level 2

22

4.3.4 Use Case Diagram

The use case diagram of the system is represented in fig 4.6. The diagram describes

different entities present in the system and what all tasks are performed by each task.

The use case diagram consists of two entity namely system and user. The task performed

by the system is importing, preprocessing, data scaling, CNN model generation, analysis

and validation. The task performed by the user is to provide the system with the required

training and testing dataset.

Figure 4.5: Use Case Diagram

23

4.3.5 UML Activity Diagram

Activity diagram is also called behavioral diagram. The behavioral diagram of the system

is shown in fig 4.5. The diagram describes how the system responses on different paths

during the execution of the model i.e. from starting point till the end point.

Figure 4.6: UML Activity Diagram

24

4.3.6 Summary

The above chapter deals with the system design where it explains about the system

architecture that represent the authentication system and how different classes are clas-

sified, different processes or steps that is performed by the system which represent the

behaviour of the system that represented by the UML activity diagram, different entities

and operation performed by each entities that are involved in the system is represented

using the use case diagram and the data flow of the system which is represented by

different level of flow diagram.

25

Chapter 5

IMPLEMENTATION

This chapter illustrates the implementation part of the neural network i.e. convolutional

neural network that can recognize whether the multimedia device within the wireless

medium are legitimate devices or not. Building the system can divided into three phases

know as preprocessing, data scaling and model building. Each phases have set of pro-

cesses.

5.1 Programming Language and Platform Selection

The programming language that was used the CNN model was python 3.9 along with the

libraries such as sklearn, tenserflow and keras. The IDE that was used to build the model

was anaconda navigator which provided the platform jupyter notebook which is a open

format document which was based on JSON. Visual Studio Code was used to integrate

the application with the front end and the front end was build using HTML and CSS.

5.2 Process involved in implementation

The first step to build the model is to determine the right set of dataset to train the

model. The unstructured time series dataset was obtained from the NIST. The website

of NIST provided scenario and information of smart industries and smart systems. The

dataset consisted of information about 47 sensors or devices which includes the physical

26

layer attributes of the devices namely RSS, DAS, PCC and CIR. The size of the dataset

is very large, so working with it is intriguing. The steps preformed in the implementation

are:

5.2.1 Splitting

The dataset which was obtained was in two part, namely training dataset and test-

ing dataset, figure 5.1. The shape of the training dataset consisted of 87,554 rows and

188 columns which had a total size of 1,64,60,152 and the shape of the testing dataset

consisted of 21,892 rows and 188 columns. The dimension of both the dataset of two-

dimensional.

Figure 5.1: Dataset Splitting

5.2.2 Preprocessing

This step involves processing the dataset that involves filling the missing data or removing

them and getting the dataset clean for building. But the dataset obtained was already

preprocessed and did require any further preprocessing represented in figure 5.2.

Figure 5.2: Preprocessing of Dataset

27

5.2.3 Data Modelling

The dataset obtained was needed to be modified to obtain the required the results. First

the dataset was needed to resampled. This was done using the pandas dataframe called

resample() which is mainly used in time series dataset which is represented in figure 5.3.

It is used to generate unique distribution of samples based on the actual dataset. It is

a very important step in the analysis because it increases the accuracy and balance the

uncertainty of the dataset. It is also a important step because while inducing noise in the

dataset, the noise needs to be distributed equally within every class.

Once the dataset is resampled, noise can be appended equally within every class. The

noise induced is Gaussian noise. It is generated using NumPy random normal function,

which takes three argument, namely mean, standard deviation and shape of the input

array. Based on the value given to the standard deviation, noise can be induced in the

dataset.

Figure 5.3: Resampling of dataset

5.2.4 Feature Extraction

In order to extract the features present CNN model is build. The model is build on

different layers. The main layer are the Convolution layer, Max Pooling layer, Flatten

layer and Fully Connected Layer which is represented in figure 5.4.

The Convolution layer is mainly made of filter/kernel which is matrix that convolve

28

over the training dataset. It is a linear function that performs dot product between the

input array and the weight array which results in activation function. The filter convolve

around the complete data multiple time which results in feature map. Any number of

convolution layer can be added. Three layer is added to the system with varying filter

size. The feature map obtained by the layer is the input to the next layer called the Max

Pooling layer.

The Max Pooling layer also know as down sampling layer is a generalization process

used to reduce overfitting. This layer reduce the size of the size of the feature map

obtained, in other words it can also be called as optimization because the max pooling

filter convolve through the feature map and selects only the highly weighted features

present in the feature map, removing the least once thereby reducing the size of the

feature map. The down sampled feature map is given to next layer called flatten.

Flatten layer is a layer between the convolution filters and the fully connected layer.

It is function that creates a copy of the input array into one dimensional. This one

dimensional array of the feature map is given as input to the fully connected layer.

The fully connected layer is simple feed forward neural network that propagates the

input forward the hidden layer where dot product between the weights and input array

takes place and the results are forwarded to the output layer. This networks does not

contain any loops.

Figure 5.4: Feature Extraction

29

5.2.5 Classifiers

• keras.layers.Convolution1D keras.layers.Convolution1D This layer creates a con-

volutional filter/kernel that convolves with the input layer which is a single dimen-

sion to produce a output. Parameters used are:

– filters: Integer, specifying the number of output filters.

– kernel size: Integer, specifying the size of the 1D kernel/filter.

– padding: ”same” which results in padding with zero’s to the left/right or

up/down of the input array so that the output array has the same dimen-

sion as that of the input.

Figure 5.5: Convolution 1D

• keras.layers.BatchNormalization() This layer transforms the mean output close

to zero and standard deviation output close to one. Parameters used are:

– axis: Integer, column which needs to be normalized.

– momentum: assign momentum to the average.

– beta initializer: initial the beta weight.

– gamma initializer: initial the gamma weight.

Figure 5.6: BatchNormalization()

• keras.layers.MaxPooling() Downsamples the input within the dimension by tak-

ing the maximum value within the input channel. The filter is shifted by the pa-

rameter called strides. Parameters used are:

– pool size: Integer, that specify the filter size which takes the maximum size

from the input array.

30

– strides: Integer, it specifies the number of moves the filter as to move for each

pooling step.

– padding: ”same” which results in padding with zero’s to the left/right or

up/down of the input array so that the output array has the same dimen-

sion as that of the input.

Figure 5.7: MaxPooling()

• keras.layers.Flatten() Flatten the feature map i.e. the input from the convolu-

tional layer. Parameters used are:

– data format: String, which specify the order of input dimension.

Figure 5.8: Flatten()

• keras.layers.Dense() It is used to implement the operation: output = activa-

tion(dot(input, kernel) + bias), where activation is the activation function that is

performed, bias is the bias vector that is created and kernel is the weight matrix

created. Parameters used are:

– units: Integer, dimension of the output.

– activation: specify the activation function that needs to be used.

– use bias: Boolean, determines whether to use bias vector.

31

Figure 5.9: Dense()

5.3 Implementation Challenges

The challenges faced while implementation are:

• The dataset is extremely very large that consisted around 2 crore attributes. So to

handle this large amount data came with its own challenges. The first challenge was

how to balance the dataset. Since the dataset contained data of different classes,

each classes required a balanced set of data so when operations are performed on

them they are equally affected on all the values so the that the neural network get

a whole idea of the multimedia network it working on.

The second problem was the batch size that need to to specified during the model

building, the neural network is trained in batch’s, where each batch has a required

size and this size matter a lot. So specifying the size of the batch was very important

because it affect the reckoning rate and the accuracy.

• Since the model was trained with Gaussian noise with different standard deviation

as well, it needed to be ensured that the noise is distributed equally through the

dataset. So in order to do that different approach was required to be tested to

distribute the noise within every class was important. The best way was to use the

resample method, which creates copies of the attributes of a particular class and

makes each classes balanced.

• Building the model architecture was difficult, because neural network is build is

using different layer and each layer as to perform its own operation. So adding and

32

removing layers in the architecture will bring changes in the accuracy. So different

trail and error methods needs to performed to build the model to get the required

accuracy and based on that a particular implementation is selected.

5.4 Summary

This chapters summaries about the implementation of the neural network(CNN). It gen-

erally talks about the layers and steps involved in the implementation. Its explains the

operations performed on each step and based on the operation how the implementation

can be effected. This chapter also explains about the different steps that is involved in

the implementation and what are operations performed on each step.

33

Chapter 6

SOFTWARE TESTING

In this chapter, working of the proposed system will be tested and compare the different

result with the varying noise induced. It is also a process of validating the system.

6.1 Software Testing

A total of six models will be build which includes one model which is trained without

noise and model which will be trained with Gaussian noise of different standard deviation.

Once the model is trained, the model will be validated using the validation dataset and

result will be analyzed.

6.2 Unit Test of CNN model without noise

The table 6.1 describes about the testing of CNN authentication system which is trained

without any Gaussian noise, which is then tested and validated and its corresponding

output i.e., the result of analysis which gives the model accuracy.

34

Table 6.1: Testing of CNN without noise

Test Case 01

Test Name ”Testing CNN without noise”

Input

CNN Model generated using the train-

ing dataset without noise and validat-

ing using the test dataset.

Output Model Accuracy: 97.36

Remark Success%

6.3 Unit Test of CNN model with Noise (Standard

deviation: 0.1)

The table 6.2 describes about the testing of CNN authentication system which is trained

with Gaussian noise of standard deviation 0.1, which is then tested and validated and

its corresponding output i.e., the result of analysis which gives the model accuracy is

represented.

Table 6.2: Testing of CNN with noise 0.1

Test Case 02

Test Name
”Testing CNN with noise of Standard

deviation: 0.1”

Input

CNN Model generated using the train-

ing dataset with noise of Standard de-

viation 0.1 and validating using the test

dataset.

Output Model Accuracy: 94.21

Remark Success%

35

6.4 Unit Test of CNN model with Noise (Standard

deviation: 0.2)

The table 6.3 describes about the testing of CNN authentication system which is trained

with Gaussian noise of standard deviation 0.2, which is then tested and validated and

its corresponding output i.e., the result of analysis which gives the model accuracy is

represented.

Table 6.3: Testing of CNN with noise 0.2

Test Case 03

Test Name
”Testing CNN with noise of Standard

deviation: 0.2”

Input

CNN Model generated using the train-

ing dataset with noise of Standard de-

viation 0.2 and validating using the test

dataset.

Output Model Accuracy: 92.83

Remark Success%

6.5 Unit Test of CNN model with Noise (Standard

deviation: 0.3)

The table 6.4 describes about the testing of CNN authentication system which is trained

with Gaussian noise of standard deviation 0.3, which is then tested and validated and

its corresponding output i.e., the result of analysis which gives the model accuracy is

represented.

36

Table 6.4: Testing of CNN with noise 0.3

Test Case 04

Test Name
”Testing CNN with noise of Standard

deviation: 0.3”

Input

CNN Model generated using the train-

ing dataset with noise of Standard de-

viation 0.3 and validating using the test

dataset.

Output Model Accuracy: 89.74

Remark Success%

6.6 Unit Test of CNN model with Noise (Standard

deviation: 0.4)

The table 6.5 describes about the testing of CNN authentication system which is trained

with Gaussian noise of standard deviation 0.4, which is then tested and validated and

its corresponding output i.e., the result of analysis which gives the model accuracy is

represented.

Table 6.5: Testing of CNN with noise 0.4

Test Case 05

Test Name
”Testing CNN with noise of Standard

deviation: 0.4”

Input

CNN Model generated using the train-

ing dataset with noise of Standard de-

viation 0.4 and validating using the test

dataset.

Output Model Accuracy: 83.69

Remark Success%

37

6.7 Unit Test of CNN model with Noise (Standard

deviation: 0.5)

The table 6.6 describes about the testing of CNN authentication system which is trained

with Gaussian noise of standard deviation 0.5, which is then tested and validated and

its corresponding output i.e., the result of analysis which gives the model accuracy is

represented.

Table 6.6: Testing of CNN with noise 0.5

Test Case 06

Test Name
”Testing CNN with noise of Standard

deviation: 0.5”

Input

CNN Model generated using the train-

ing dataset with noise of Standard de-

viation 0.5 and validating using the test

dataset.

Output Model Accuracy: 82.72

Remark Success%

6.8 Integration Testing

Integration testing is approach where the different units or modules are integrated and

tested whether they perform the required functionality or not. It includes different mod-

ules to be tested.

The first test to be performed is the import module testing, where all the necessary mod-

ules are import from the predefined libraries based on the requirement and run it. 6.7

represent the operation of importing the modules.

38

Table 6.7: Import modules

Test Case 07

Test Name ”Importing Modules”

Input Import ”modules” statements

Expected

Output
The module have imported%

Actual Out-

put

The modules has imported and ready

to use

Remark Success

6.9 Importing Dataset

The first step to train the neural network is to import the required dataset. Importing

dataset is done using the pandas python libraries.

Table 6.8: Import dataset

Test Case 08

Test Name ”Importing Dataset”

Input Import ”dataset” statements

Expected

Output
The dataset have imported%

Actual Out-

put
The dataset has imported and ready to use

Remark Success

6.10 Importing user defined function

As mentioned in the non-functional requirement, the building of neural network as main-

tained modularity. So, the model is build using user defined method each performing

39

its own operations which takes the required arguments or parameters and perform the

required task.

Table 6.9: Import user defined function

Test Case 09

Test Name ”Importing user defined function”

Input Import ”user defined function” statements

Expected

Output
The user defined function have imported%

Actual Out-

put

The user defined function has imported and

ready to use

Remark Success

6.11 System Testing

System testing is a approach that checks the complete model or the authentication sys-

tem. The checks include whether system is performing to the required accuracy and is

able to recognise the objective of the system.

Table 6.10: System Testing

Test Case 10

Test Name ”System Testing”

Input
Training dataset used to build the CNN

Model

Expected

Output
Model analysis resulting in less model lose.%

Actual Out-

put

Model analysis with good accuracy and low

model loss

Remark Success

40

Chapter 7

EXPERIMENTAL ANALYSIS

AND RESULTS

In this chapter, the neural network execution and results will be discussed.

7.1 Experimental Analysis

Confusion Matrix (CM) describes the graphical summary of the correct and incorrect

predictions based on the different classess of predication. It also determine the perfor-

mance of each class. CM of each CNN model will described below with includes CNN

model trained using noise and without noise.

41

7.1.1 Confusion Matrix of CNN Model without Noise

Figure 7.1 represent the confusion matrix of the convolutional neural network which is

trained without the Gaussian noise. CM represent the performance matrix for each class

in terms of predicted value with respect to the actual value.

Figure 7.1: CNN without Noise - Confusion Matrix

42

7.1.2 Confusion Matrix of CNN Model with Noise 0.1

Figure 7.2 represent the confusion matrix of the convolutional neural network which is

trained with the Gaussian noise of standard deviation 0.1. CM represent the performance

matrix for each class in terms of predicted value with respect to the actual value.

Figure 7.2: CNN with Noise 0.1 - Confusion Matrix

43

7.1.3 Confusion Matrix of CNN Model with Noise 0.2

Figure 7.3 represent the confusion matrix of the convolutional neural network which is

trained with the Gaussian noise of standard deviation 0.2. CM represent the performance

matrix for each class in terms of predicted value with respect to the actual value.

Figure 7.3: CNN with Noise 0.2 - Confusion Matrix

44

7.1.4 Confusion Matrix of CNN Model with Noise 0.3

Figure 7.4 represent the confusion matrix of the convolutional neural network which is

trained with the Gaussian noise of standard deviation 0.3. CM represent the performance

matrix for each class in terms of predicted value with respect to the actual value.

Figure 7.4: CNN with Noise 0.3 - Confusion Matrix

45

7.1.5 Confusion Matrix of CNN Model with Noise 0.4

Figure 7.5 represent the confusion matrix of the convolutional neural network which is

trained with the Gaussian noise of standard deviation 0.4. CM represent the performance

matrix for each class in terms of predicted value with respect to the actual value.

Figure 7.5: CNN with Noise 0.4 - Confusion Matrix

46

7.1.6 Confusion Matrix of CNN Model with Noise 0.5

Figure 7.6 represent the confusion matrix of the convolutional neural network which is

trained with the Gaussian noise of standard deviation 0.5. CM represent the performance

matrix for each class in terms of predicted value with respect to the actual value.

Figure 7.6: CNN with Noise 0.5 - Confusion Matrix

47

7.2 Analysis and Validation

This section discuss about the model accuracy and model loss, where validation is per-

formed between the trained model and the validation dataset.

7.3 Model Accuracy of CNN Model without Noise

Figure 7.7 represent the accuracy graph of the neural network model that is trained

without any Gaussian noise. The graph represents a relation between the trained model

and validation model. It helps to analysis the difference in the accuracy model between

the training and the validation. It gives a better understanding of the model and also

helps to understand is the model build right.

Figure 7.7: CNN without Noise - Model Accuracy

48

7.4 Model Accuracy of CNN Model with Noise 0.1

Figure 7.8 represent the accuracy graph of the neural network model that is trained with

Gaussian noise of standard deviation 0.1. The graph represents a relation between the

trained model and validation model. It helps to analysis the difference in the accuracy

model between the training and the validation. It gives a better understanding of the

model and also helps to understand is the model build right.

Figure 7.8: CNN with Noise 0.1 - Model Accuracy

7.5 Model Accuracy of CNN Model with Noise 0.2

Figure 7.9 represent the accuracy graph of the neural network model that is trained with

Gaussian noise of standard deviation 0.2. The graph represents a relation between the

trained model and validation model. It helps to analysis the difference in the accuracy

model between the training and the validation. It gives a better understanding of the

model and also helps to understand is the model build right.

49

Figure 7.9: CNN with Noise 0.2 - Model Accuracy

7.6 Model Accuracy of CNN Model with Noise 0.3

Figure 7.10 represent the accuracy graph of the neural network model that is trained with

Gaussian noise of standard deviation 0.3. The graph represents a relation between the

trained model and validation model. It helps to analysis the difference in the accuracy

model between the training and the validation. It gives a better understanding of the

model and also helps to understand is the model build right.

Figure 7.10: CNN with Noise 0.3 - Model Accuracy

50

7.7 Model Accuracy of CNN Model with Noise 0.4

Figure 7.11 represent the accuracy graph of the neural network model that is trained with

Gaussian noise of standard deviation 0.4. The graph represents a relation between the

trained model and validation model. It helps to analysis the difference in the accuracy

model between the training and the validation. It gives a better understanding of the

model and also helps to understand is the model build right.

Figure 7.11: CNN with Noise 0.4 - Model Accuracy

7.8 Model Accuracy of CNN Model with Noise 0.5

Figure 7.12 represent the accuracy graph of the neural network model that is trained with

Gaussian noise of standard deviation 0.5. The graph represents a relation between the

trained model and validation model. It helps to analysis the difference in the accuracy

model between the training and the validation. It gives a better understanding of the

model and also helps to understand is the model build right.

51

Figure 7.12: CNN with Noise 0.5 - Model Accuracy

52

Chapter 8

CONCLUSION

The neural network based security authentication for wireless multimedia devices pro-

posed in this paper has significant practical importance. The neural network not only

ensures the privacy of the multimedia devices but also ensures a light weight authentica-

tion system. The experimental analysis prove that the system build effectively learns the

physical layer attributes of the devices, which are manually selected by the algorithm.

In short, the neural network has good detection performance and less leading the lesser

communication latency.

8.1 Limitations

The neural network based security authentication which is based on the physical layer

attributes of the multimedia devices can achieve better accuracy if the dimension of

the features becomes large. So, if the dimension of the security authentication can be

increased the neural network will have bigger accuracy rate of the wireless multimedia

device.

8.2 Future Scope

The section I discusses about the challenges of traditional authentication system and dis-

cussed some authentication mechanisms for wireless multimedia environments. A promis-

53

ing general idea is to test the wireless physical layer attributes and use computing to boost

detection accuracy. Common to any or all algorithms that rely on statistical methods is

that the challenge of feature selection. Especially in an adversarial scenario, the estimated

signal preprocessing is an important aspect of these authentication schemes.

Deep learning-driven signal processing is additionally a possible method for selecting

physical layer features. Deep learning is a good thanks to solve the uncertainty of wireless

networks. It provides data-centric channel feature mining and deep feature mapping which

might be used for secure authentication modeling. particularly, the deep learning tool

provides multiple operators that transform a model-based authentication scheme into an

information analytic-centric security technology. Optimally, the security should depend

on the knowledge, not the authentication model.

In most cases, the quality authentication approach works well during a perfect com-

munication environment, but its detection accuracy is significantly reduced when realistic

environment interference is introduced. regardless of the ideal situation, we’d wish to style

an appropriate adaptive authenticator from a practical perspective. Different assumptions

and communication environments make it difficult to spice up the adaptability of the au-

thentication model. Thus, solving these questions is far more interesting direction for

future research.

54

DISSERTATION BASED PUBLICATIONS

• Anjan K Koundinya and Gautham S K, “CNN Based Security Authentication for

Wireless Multimedia Network” accepted at International Journal of Wireless and

Microwave Technologies (IJWMT) in July 2021.

• Anjan K Koundinya and Gautham S K , ”Two-Layer Encryption based on Pail-

lier and ElGamal Cryptosystem for Privacy Violation” accepted at International

Journal of Wireless and Microwave Technologies IJWMT Vol. 11, No. 3, Jun. 2021.

• Anjan K Koundinya and Gautham S K, “Machine Learning Based Security Au-

thentication for Wireless Multimedia Network” accepted at Information and Com-

munication Technology For Competitive Strategies Fifth International Conference

(ICTCS 2020) held during December 11-12, 2020.

55

Bibliography

[1] D. Wu, Zhihao Zhang, Shaoen Wu, J. Yang, and Ruyang Wang. Biologically inspired

resource allocation for network slices in 5g-enabled internet of things. IEEE Internet

of Things Journal, 6:9266–9279, 2019.

[2] Puning Zhang, Xuyuan Kang, Xuefang Li, Yuzhe Liu, Dapeng Wu, and Ruyan

Wang. Overlapping community deep exploring-based relay selection method toward

multi-hop d2d communication. IEEE Wireless Communications Letters, 8(5):1357–

1360, 2019.

[3] Zufan Zhang, Chun Wang, Chenquan Gan, Shaohui Sun, and M. Wang. Automatic

modulation classification using convolutional neural network with features fusion

of spwvd and bjd. IEEE Transactions on Signal and Information Processing over

Networks, 5:469–478, 2019.

[4] Zhidu Li, Hailiang Liu, and Ruyan Wang. Service benefit aware multi-task assign-

ment strategy for mobile crowd sensing. Sensors, 19(21), 2019.

[5] Zhidu Li, Yuming Jiang, Yuehong Gao, Lin Sang, and Dacheng Yang. On buffer-

constrained throughput of a wireless-powered communication system. IEEE Journal

on Selected Areas in Communications, 37(2):283–297, 2019.

[6] Dapeng Wu, Hang Shi, Honggang Wang, Ruyan Wang, and Hua Fang. A feature-

based learning system for internet of things applications. IEEE Internet of Things

Journal, 6(2):1928–1937, 2019.

56

[7] Puning Zhang, Xuyuan Kang, Dapeng Wu, and Ruyan Wang. High-accuracy entity

state prediction method based on deep belief network toward iot search. IEEE

Wireless Communications Letters, 8(2):492–495, 2019.

[8] Dapeng Wu, Shushan Si, Shaoen Wu, and Ruyan Wang. Dynamic trust relationships

aware data privacy protection in mobile crowd-sensing. IEEE Internet of Things

Journal, 5(4):2958–2970, 2018.

[9] Dapeng Wu, Lingli Deng, Honggang Wang, Keyu Liu, and Ruyan Wang. Similarity

aware safety multimedia data transmission mechanism for internet of vehicles. Future

Generation Computer Systems, 99:609–623, 2019.

[10] He Fang, Angie Qi, and Xianbin Wang. Fast authentication and progressive autho-

rization in large-scale iot: How to leverage AI for security enhancement? CoRR,

abs/1907.12092, 2019.

[11] Mian Ahmad Jan, Muhammad Usman, Xiangjian He, and Ateeq Ur Rehman. Sams:

A seamless and authorized multimedia streaming framework for wmsn-based iomt.

IEEE Internet of Things Journal, 6(2):1576–1583, 2019.

[12] Xiaoying Qiu, Ting Jiang, Sheng Wu, and Monson Hayes. Physical layer authenti-

cation enhancement using a gaussian mixture model. IEEE Access, 6:53583–53592,

2018.

[13] Ning Xie and Changsheng Chen. Slope authentication at the physical layer. IEEE

Transactions on Information Forensics and Security, 13(6):1579–1594, 2018.

[14] E. Jorswieck, S. Tomasin, and A. Sezgin. Broadcasting into the uncertainty: Authen-

tication and confidentiality by physical-layer processing. Proceedings of the IEEE,

103:1702–1724, 2015.

[15] Ning Xie and Shengli Zhang. Blind authentication at the physical layer under

time-varying fading channels. IEEE Journal on Selected Areas in Communications,

36(7):1465–1479, 2018.

57

[16] Ning Wang, Ting Jiang, Shichao Lv, and Liang Xiao. Physical-layer authentication

based on extreme learning machine. IEEE Communications Letters, 21(7):1557–

1560, 2017.

[17] Fei Pan, Zhibo Pang, Hong Wen, Michele Luvisotto, Ming Xiao, Run-Fa Liao, and

Jie Chen. Threshold-free physical layer authentication based on machine learning for

industrial wireless cps. IEEE Transactions on Industrial Informatics, 15(12):6481–

6491, 2019.

[18] Run-Fa Liao, Hong Wen, Jinsong Wu, Fei Pan, Aidong Xu, Yixin Jiang, Feiyi Xie,

and Minggui Cao. Deep-learning-based physical layer authentication for industrial

wireless sensor networks. Sensors, 19(11), 2019.

[19] Rick Fritschek, Rafael F. Schaefer, and Gerhard Wunder. Deep learning for the

gaussian wiretap channel. In ICC 2019 - 2019 IEEE International Conference on

Communications (ICC), pages 1–6, 2019.

[20] Haitao Gan, Zhenhua Li, Yingle Fan, and Zhizeng Luo. Dual learning-based safe

semi-supervised learning. IEEE Access, 6:2615–2621, 2017.

[21] Baibhab Chatterjee, Debayan Das, Shovan Maity, and Shreyas Sen. Rf-puf: En-

hancing iot security through authentication of wireless nodes using in-situ machine

learning. IEEE Internet of Things Journal, 6(1):388–398, 2019.

[22] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A deep learning approach

for intrusion detection using recurrent neural networks. Ieee Access, 5:21954–21961,

2017.

[23] Chunxiao Jiang, Haijun Zhang, Yong Ren, Zhu Han, Kwang-Cheng Chen, and Lajos

Hanzo. Machine learning paradigms for next-generation wireless networks. IEEE

Wireless Communications, 24(2):98–105, 2017.

[24] Aidin Ferdowsi and Walid Saad. Deep learning for signal authentication and secu-

rity in massive internet-of-things systems. IEEE Transactions on Communications,

67(2):1371–1387, 2019.

58

[25] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Fred Juang. Power of deep learning for

channel estimation and signal detection in ofdm systems. 2017.

[26] Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang, and Di Wu. Iot security

techniques based on machine learning: How do iot devices use ai to enhance security?

IEEE Signal Processing Magazine, 35(5):41–49, 2018.

[27] Qian Mao, Fei Hu, and Qi Hao. Deep learning for intelligent wireless networks: A

comprehensive survey. IEEE Communications Surveys Tutorials, 20(4):2595–2621,

2018.

[28] Xiaoying Qiu, Ting Jiang, and Weixia Zou. Physical layer security in simultane-

ous wireless information and power transfer networks. In 2017 17th International

Symposium on Communications and Information Technologies (ISCIT), pages 1–4,

2017.

[29] Xiaoying Qiu and Ting Jiang. Safeguarding multiuser communication using full-

duplex jamming receivers. In 2017 IEEE 28th Annual International Symposium on

Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–5, 2017.

[30] Timothy O’Shea and Jakob Hoydis. An introduction to deep learning for the physical

layer. IEEE Transactions on Cognitive Communications and Networking, 3(4):563–

575, 2017.

[31] Olakunle Ibitoye, Omair Shafiq, and Ashraf Matrawy. Analyzing adversarial attacks

against deep learning for intrusion detection in iot networks, 2019.

[32] Xiaoying Qiu. IET Communications, 12:1805–1811(6), September 2018.

[33] Xinlei Wang, Wei Cheng, Prasant Mohapatra, and Tarek Abdelzaher. Enabling

reputation and trust in privacy-preserving mobile sensing. IEEE Transactions on

Mobile Computing, 13(12):2777–2790, 2014.

[34] Sebastian Henningsen, Björn Scheuermann, and Stefan Dietzel. Challenges of mis-

behavior detection in industrial wireless networks. In Ad Hoc Networks, pages 37–46,

2018.

59

[35] He Fang, Xianbin Wang, and Lajos Hanzo. Learning-aided physical layer authentica-

tion as an intelligent process. IEEE Transactions on Communications, 67(3):2260–

2273, 2019.

60

Appendices

Appendix A

Importing Dataset & Dataset Description

61

Re-sampling Dataset

62

Appendix B

Anaconda IDE (Jupyter

63

Flask Web Framework

64

